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Experimental researchers do not know it, but item reliabilities are crucial for prediction 

David Trafimow 

New Mexico State University 

Abstract 

The importance of test reliabilities for predicting criterion variables has been well-established by 

psychometricians and is familiar to experimental researchers too. Thus, standard operating 

procedure for experimental researchers includes assessing and reporting Cronbach’s alpha. 

However, experimental researchers generally ignore item reliabilities. And yet, item reliabilities 

can be argued much more important than indices of single-administration whole test reliabilities, 

such as Cronbach’s alpha. The present goal is to make that argument and detail the complications 

that arise upon considering item reliabilities. Item reliabilities interact complexly with true item-

criterion correlation coefficients, true interitem correlation coefficients, the number of items, and 

whether the researcher engages in amalgamating or unamalgamating test items. Standard 

operating procedure should include the assessment and reporting of item reliabilities.   
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 Imagine that participants are presented with a test item twice under idealized conditions, 

without any effect of the first test-taking occasion on the second one (no fatigue, practice effects, 

and so on); the correlation between scores on the two test-taking occasions can be considered to 

index the reliability of the item (Lazarsfeld, 1959).1 Equivalently (see Gulliksen, 1987 for a well-

cited review and mathematical derivation), it is possible to invoke the classical test theory notion 

of indefinite test taking occasions, with each participant’s expectation across these test taking 

occasions as her or his true score. Under the assumption that each person’s observed score on the 

item on a single test-taking occasion equals that person’s true score plus error, item reliability 

can be considered the variance in true scores for the item, across participants, divided by the 

variance in observed scores for the item (true score variance plus error variance): 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =

𝑡𝑟𝑢𝑒 𝑠𝑐𝑜𝑟𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
=

𝑡𝑟𝑢𝑒 𝑠𝑐𝑜𝑟𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑡𝑟𝑢𝑒 𝑠𝑐𝑜𝑟𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒+𝑒𝑟𝑟𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
. Experimental researchers practically 

never care about item reliability. Should they?  

 Based on the seminal work by Spearman (1904), it is possible to argue that item 

reliabilities are unimportant if the reliability of the whole test is acceptable. Spearman’s (1904) 

attenuation equation is presented below as Equation 1: 

     𝑟𝑎𝑐 = 𝑟𝑇𝑎𝑐√𝑟𝑎𝑎′𝑟𝑐𝑐′.      (1) 

Equation 1 includes the following components: 

 𝑟𝑎𝑐 denotes the observed correlation between a test 𝑎 and a criterion 𝑐, 

 𝑟𝑇𝑎𝑐 denotes the correlation between true scores on the test and the criterion, the 

correlation that would be obtained sans random measurement error, 

                                                
1 Even when conditions are not ideal, item reliabilities usually are estimated by computing the correlation across two 

test-taking occasions. Practically all statistics programs, and even many spreadsheets, are capable of performing the 

calculation. For example, in Excel, the CORREL command will work. In jamovi, it is possible to click on 

‘correlation matrix’ under ‘regression.’ 
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 𝑟𝑎𝑎′ denotes the reliability of the test, and 

 𝑟𝑐𝑐′ denotes the reliability of the criterion.  

Equation 1 clarifies that if the reliabilities of the test and criterion are close to 1.00, then the test-

criterion correlation coefficient a researcher is likely to observe will be close to the true 

correlation coefficient. Poor reliabilities would cause the observed correlation coefficient to 

attenuate substantially relative to the true correlation coefficient; hence, the label ‘attenuation’ 

equation.  

 Although impressive interitem correlation coefficients benefit the reliability of the whole 

test, traditional formulas, such as Cronbach’s alpha (1951), show that even poor interitem 

correlation coefficients can be compensated merely by including many items (see Crocker & 

Algina, 1986; Gulliksen, 1987; Lord & Novick, 1968 for well-cited reviews). For instance, 

suppose a researcher has 40 items, and the average interitem correlation coefficient equals 0.20. 

In that case, according to the Cronbach’s alpha formula, alpha is 0.91. And other reliability 

formulas would give very positive overall reliability assessments too. In general, if the interitem 

correlation coefficients are large, few items are needed to obtain an impressive value for 

Cronbach’s alpha; if the interitem correlation coefficients are small, many items are needed to 

obtain an impressive value for Cronbach’s alpha. Thus, provided there are sufficient items, item 

reliability is unimportant; it is the reliability of the whole test that matters. Item reliability only 

matters insofar as it affects overall test reliability. If the overall reliability of a test is sufficient 

for the researcher’s goal, item reliabilities can be ignored. Consistent with this thinking, 

experimental researchers practically never report item reliability coefficients; they typically 

report Cronbach’s alpha for whole tests.  
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 Hence, we arrive at a conclusion that item reliabilities are unimportant if the overall 

reliability of the test is impressive. And this can be accomplished simply by including sufficient 

items. The present goal is to argue to the contrary, with much nuance.   

Guilford and Fruchter (1973), and implications 

 A limitation of Equation 1 is that it does not include items, thereby rendering difficult 

determining the effect of items on a test’s ability to predict a criterion (Trafimow, Hyman, & 

Kostyk, 2023). Guilford and Fruchter (1973) explicitly considered items with Equation 2 below 

(also see Gulliksen, 1987),  

     𝑟𝑐𝑠 =
∑ 𝑟𝑐𝑖𝜎𝑖

√∑ 𝜎𝑖
2+2 ∑ 𝑟𝑖𝑗𝜎𝑖𝜎𝑗

.     (2) 

Using their notation, Equation 1 has the following components: 

 𝑟𝑐𝑠 denotes the correlation between the single test, including all items, with the criterion, 

 𝑟𝑐𝑖 denotes the correlation between any one item Xi and the criterion, 

 𝜎𝑖 denotes the item’s standard deviation, and 

 𝑟𝑖𝑗 denotes the correlation between Xi and any other item Xj, with j greater than i.2 

 Equation 2 implies that adding items can aid prediction but can harm prediction too. If 

the added items correlate reasonably well with the criterion, or at least approximately as well as 

the other items, then including them will increase the test’s ability to predict the criterion. 

However, if the added items correlate sufficiently poorly with the criterion, relative to the other 

items, then including them will decrease the test’s ability to predict that criterion (Trafimow et 

al., 2023). For a quick example, suppose we set all interitem correlation coefficients at 0.40 and 

                                                
2 Equation 2 assumes equal weights for the items. Guilford and Fruchter (1973) provided a more complex equation 

for unequal weighting too, but the simpler equation is sufficient for present purposes.  
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all item standard deviations and variances at 1.00. Two items each correlate with the criterion at 

the 0.50 level, and a third item also correlates with the criterion at the 0.50 level. In that case, the 

overall prediction is 0.60 with the original two items and 0.65 with the third item included. In 

contrast, if the third item correlates with the criterion at the 0.10 level, then including it results in 

an overall prediction equal to 0.47, a substantial decrease from 0.60 using only the original two 

items.  

 It is not surprising that adding ‘good’ items betters criterion prediction whereas adding 

‘bad’ items worsens criterion prediction. However, Equation 2 implies surprising news too. 

Consider that to publish in top experimental journals, researchers must report impressive 

reliabilities. As researchers usually favor Cronbach’s alpha, these need to exceed a threshold of 

.70 or 0.80, depending on the journal editor or reviewers. Furthermore, because Cronbach’s 

alpha depends on (1) interitem correlation coefficients and (2) the number of items, if we hold 

the number of items constant, the larger the interitem correlation coefficients, the more 

impressive the value for Cronbach’s alpha. Although a researcher can overcome poor interitem 

correlation coefficients by having many items, it is often inconvenient to use long tests. Hence, 

many researchers experience pressure to have interitem correlation coefficients be as large as 

possible to maximize Cronbach’s alpha and the probability of publication.  

 Another perceived advantage to having large interitem correlation coefficients is the 

common belief that large interitem correlation coefficients maximize the ability to predict a 

criterion. After all, large interitem correlation coefficients maximize Cronbach’s alpha, the most 

typical reliability index, and Equation 1 indicates that better reliability increases the ability of a 

test to predict the criterion. However, a careful investigation of the denominator of Equation 2 

belies all this. To see why, note that the terms containing the interitem correlation coefficients 𝑟𝑖𝑗 
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are connected to each other and other terms by plus signs. Hence, the larger the interitem 

correlation coefficients, the larger the denominator of Equation 2, and the worse the overall 

prediction of the criterion 𝑟𝑐𝑠. For example, imagine a two-item test where the standard 

deviations of the items are set at 1.00, item-criterion correlation coefficients both equal 0.6, and 

the interitem correlation coefficient equals 0.90 or 0.10. Although researchers typically would 

rather have the larger (𝑟12 = 0.90) than smaller (𝑟12 = 0.10) interitem correlation coefficient, to 

demonstrate the reliability of the test, it is the smaller value that results in superior prediction of 

the criterion (𝑟𝑐𝑠 = 0.81), and the larger value that results in inferior prediction of the criterion 

(𝑟𝑐𝑠 = 0.62). The typical insistence on large interitem correlation coefficients incurs a large cost 

on researchers with respect to criterion prediction, though experimental researchers are unaware 

of it.  

 This counterintuitive effect, that large interitem coefficients that are good for single-

administration reliability, such as Cronbach’s alpha, are deleterious for criterion prediction, 

suggests that perhaps there is something wrong with single-administration reliability. Several 

researchers have argued that single-administration reliability does not properly index classical 

reliability (Revelle & Condon, 2019; Subkoviak, 1976; Trafimow et al., 2023), though this is not 

widely understood (Dunn et al., 2014; Lee and Hooley, 2005). Indeed, the thrust of classical test 

theory emphasizes that true scores are expectations of indefinite independent measurements, 

which seems inconsistent with single administration reliability such as Cronbach’s alpha.3 The 

present argument adds that although, by Equation 1, reliability is supposed to aid criterion 

prediction, single administration reliability decreases criterion prediction, keeping all else 

                                                
3 Lazarsfeld (1959) provided a widely cited interpretation that involves repeated testing with mind-washing between 

tests to ensure independence. A person’s true score is the expectation across these indefinite tests.  
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constant. Hereafter, ‘reliability’ denotes classical reliability that is distinguishable from 

Cronbach’s alpha.  

 Although the surprising deleterious effect of large interitem correlation coefficients is 

both interesting and crucial, the effect does not yet address the issue of item reliabilities. To 

move in the direction of item reliabilities, it is necessary to modify Equation 2.  

Modifying Equation 2 

 There are two categories of correlation coefficients in Equation 2. These are item-

criterion correlation coefficients 𝑟𝑐𝑖 and interitem correlation coefficients 𝑟𝑖𝑗. It is possible to 

express each of these in terms of true correlation coefficients and item reliabilities, simply by 

invoking Equation 1 and applying it to both categories of correlation coefficients. Thus, we have 

the following modified components: 

 𝑟𝑐𝑖 becomes 𝑟𝑇𝑐𝑖√𝑟𝑖𝑖′𝑟𝑐𝑐′ and 

 𝑟𝑖𝑗 becomes 𝑟𝑇𝑖𝑗√𝑟𝑖𝑖′𝑟𝑗𝑗′. 

In both cases, we have the true correlation coefficient multiplied by the square root of the 

product of the reliability coefficients. Based on the modified components, Equation 2 becomes 

Equation 3:  

    𝑟𝑐𝑠 =
∑ 𝑟𝑇𝑐𝑖√𝑟𝑖𝑖′𝑟𝑐𝑐′𝜎𝑖

√∑ 𝜎𝑖
2+2 ∑ 𝑟𝑇𝑖𝑗√𝑟𝑖𝑖′𝑟𝑗𝑗′𝜎𝑖𝜎𝑗

     (3) 

 Equation 3 has an important advantage over Equation 2, for present purposes, which is 

that it includes item reliability coefficients. However, an important disadvantage is that the item 

standard deviations 𝜎𝑖 and 𝜎𝑗 and variances 𝜎𝑖
2 are influenced by both variation in true scores and 

random variation. Likewise, both influence the reliability coefficients. Thus, there is no way to 
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assess the effect of changes in one variable keeping the other variables constant; another 

modification is needed.  

 To move in this direction, consider two classical equations.4 A classical definition of 

reliability is true score variance divided by the sum of true score variance and error variance: 

𝑟𝑎𝑎′ =
𝜎𝑇𝑎

2

𝜎𝑇𝑎
2 +𝜎𝐸𝑎

2 . Secondly, true score variance plus error variance compose variance: 𝜎𝑎
2 = 𝜎𝑇𝑎

2 +

𝜎𝐸𝑎
2 . Therefore, the components of Equation 3 can be modified as follows: 

 𝑟𝑖𝑖′ becomes 
𝜎𝑇𝑖

2

𝜎𝑇𝑖
2 +𝜎𝐸𝑖

2 , 

 𝑟𝑗𝑗′ becomes 
𝜎𝑇𝑗

2

𝜎𝑇𝑗
2 +𝜎𝐸𝑗

2 , 

 𝑟𝑐𝑐′ becomes 
𝜎𝑇𝑐

2

𝜎𝑇𝑐
2 +𝜎𝐸𝑐

2 , 

 𝜎𝑖
2 becomes 𝜎𝑇𝑖

2 + 𝜎𝐸𝑖
2 , 

 𝜎𝑖 becomes √𝜎𝑇𝑖
2 + 𝜎𝐸𝑖

2 , and 

 𝜎𝑗 becomes √𝜎𝑇𝑗
2 + 𝜎𝐸𝑗

2 . 

 Instantiating the modified components into Equation 3 renders Equation 4: 

  𝑟𝑐𝑠 =

∑ 𝑟𝑇𝑐𝑖√(
𝜎𝑇𝑖

2

𝜎𝑇𝑖
2 +𝜎𝐸𝑖

2 )(
𝜎𝑇𝑐

2

𝜎𝑇𝑐
2 +𝜎𝐸𝑐

2 )√𝜎𝑇𝑖
2 +𝜎𝐸𝑖

2

√∑(𝜎𝑇𝑖
2 +𝜎𝐸𝑖

2 )+2 ∑ 𝑟𝑇𝑖𝑗√(
𝜎𝑇𝑖

2

𝜎𝑇𝑖
2 +𝜎𝐸𝑖

2 )(
𝜎𝑇𝑗

2

𝜎𝑇𝑗
2 +𝜎𝐸𝑗

2 )√𝜎𝑇𝑖
2 +𝜎𝐸𝑖

2 √𝜎𝑇𝑗
2 +𝜎𝐸𝑗

2

.   (4) 

Although Equation 4 is inelegant, it has the advantage that crucial components can be varied, 

keeping the others constant. For example, item error standard deviations can be manipulated to 

                                                
4 Versions of these equations are provided in well-cited reviews (Crocker & Algina, 1986; Gulliksen, 1987; Lord & 

Novick, 1968), as well as in the original work by Spearman (1904). 
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influence item reliability coefficients, keeping true standard deviations constant. What lessons 

can we learn from Equation 4? 

Consequences of Equation 4 

 For a preliminary consequence, consider again the case where there are 40 items and the 

average interitem correlation coefficient equals 0.2, so that the overall value for Cronbach’s 

alpha equals 0.91. Nor is it necessary to use Cronbach’s alpha. The traditional Spearman-Brown 

formula, using 0.20 for the item reliabilities, also renders a value of 0.91 (Brown, 1910; 

Spearman, 1910).5 In addition, suppose that the item-criterion correlation coefficients equal 0.3, 

and the interitem correlation coefficients equal 0.10. Finally, suppose that the criterion is 

measured with perfect reliability. In that case, the ability of the 40-item test to predict the 

criterion equals 0.51. However, with perfectly reliable items, the value would equal 0.86. 

Converting to variance in the criterion explained by variance in the test, the observed variance 

explained is only 26%, relative to 73% that potentially could be explained, for a decrement due 

to unreliability equal to approximately 47%. These results are despite the impressive ostensible 

reliability of the whole test according to Cronbach’s alpha (0.91). Therefore, item reliabilities are 

vital though this psychometric fact seems unknown to experimental researchers.  

 The four panels included in Figure 1 illustrate some consequences of Equation 4, in a 

more systematic way, where two test items predict a criterion.6 In each panel, the correlation 

between the test and the criterion ranges along the vertical axis as a function of the error standard 

deviation along the horizontal axis (all true score standard deviations were set at 1.00 throughout 

                                                
5 Spearman-Brown requires parallel items, so the assumption would be that each item reliability equals 0.20, not just 

that the average equals 0.20. The value of 0.20 was used in making the calculations.  
6 To make the Figures, Equation 4 was converted to an Excel file using standard Excel commands. The Excel file is 

obtainable from the author by email request.   
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all explorations in this article). When the error standard deviation equals zero, then all items are 

measured without any random error, which represents the ideal case of perfect item reliability. 

As the error standard deviation increases along the horizontal axis, criterion prediction decreases. 

This decrease pertains to a single item and with the criterion reliability set at 1.00 (dotted curve), 

to both items and with the criterion reliability set at 1.00 (solid curve), or to both items and with 

the criterion reliability set at 0.70 (dashed curve).7 Within each panel, it is easy to see that 

increasing the error standard deviation is generally deleterious for predicting the criterion, 

however, increasing the error standard deviation is less deleterious if it only happens to one item 

than to both items. And prediction worsens still more if the criterion is less than perfectly 

reliable.  

---Insert Figure 1 about here--- 

 The more interesting consequences of Equation 4 occur across panels. The panels differ 

in two respects: the true item-criterion correlations were set at 0.30 or 0.50 (left panels versus 

right panels) and the true interitem correlation coefficient was set at 0.10 or 0.90 (top panels 

versus bottom panels). It is interesting to consider the single best point in each panel, where the 

error standard deviation is set at zero. In the top panels, where the true interitem correlation 

coefficient was set at 0.10, the ability of both items to predict the criterion is substantially better 

than the ability of a single item to predict the criterion. However, in the bottom panels, where the 

interitem correlation is 0.90, even when the error standard deviation is set at zero, the ability of 

both items to predict the criterion is only slightly increased over the ability of a single item to 

                                                
7 To render the criterion reliability coefficient at 0.70, with the true standard deviation set at 1.00, the error standard 

deviation equals 0.654. 
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predict the criterion. Thus, we have another demonstration of the point that larger interitem 

correlation coefficients are harmful, not beneficial, for prediction.  

 An additional consequence can be seen by comparing each rightmost panel with its 

corresponding leftmost panel. When the true item-criterion correlation coefficients are set at 

0.50, increasing random error with respect to one item, both items, or both items and the 

criterion, makes a larger difference than when the true item-criterion correlation coefficients are 

set at 0.30. In addition, the extent of the downward propagation of the curves is more 

pronounced when the true item-criterion correlation coefficients are set at 0.50 than when they 

are set at 0.30. In general, random error leads to a greater decrease in criterion prediction when 

true item-criterion correlation coefficients are larger than when they are smaller.  

 Too, it is possible to compare topmost panels with corresponding bottommost panels. 

Such comparisons show (a) that the differences between the curves are more pronounced when 

the true interitem correlation coefficient is small (0.10) than large (0.90) and (b) that the extent of 

the decrease in the curves as the error standard deviation increases is greater when the true 

interitem correlation coefficient is small than large. Although a small true interitem correlation 

coefficient is better than a large one for predicting a criterion, random measurement error can 

substantially decrease the gain in criterion prediction that researchers would otherwise enjoy 

with a small true interitem correlation coefficient.  

 Thus far, there has been no consideration of the number of items. Let us consider that 

now, setting all true item-criterion correlation coefficients equal at 0.5 and true interitem 

correlations coefficients equal at 0.1 or 0.9, as before; but have either a two-item or three-item 

test. Figure 2 illustrates what happens when the error standard deviations of the items range from 
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0 to 2.4, as in Figure 1. Like Figure 1, the various curves in all panels show that as more items 

have more random error, prediction of the criterion decreases.  

---Insert Figure 2 about here--- 

 A comparison of the first and second panels is of greater interest. Here, we see that 

criterion prediction is generally superior when there are three items than when there are two 

items. This result is due to the addition of a third good item. Had the third item been a bad item, 

adding it would have decreased, rather than increased, criterion prediction. More important, 

worst-case scenarios illustrated in the figure are less pronounced when there are three items than 

when there are two items; the curves propagate to better values for three-item than two-item 

tests. These conclusions also apply when comparing the third (two items) and fourth panels 

(three items), but where the true interitem correlation coefficients are at the 0.90 level as opposed 

to the 0.10 level.  

 Let us now consider the second and fourth panels, where there are three-item tests and 

where the true interitem correlation coefficients are set at 0.10 or 0.90. When there is little 

random error, there is an impressive advantage for setting the true interitem correlation 

coefficients at 0.10. as opposed to 0.90. However, when there is much random error, this 

advantage attenuates dramatically, especially when the criterion reliability coefficient is set at 

0.70 as opposed to 1.00.  

Unamalgamating Test Items 

 Everything stated thus far has been under the umbrella of amalgamating test items into a 

whole test, consistent with standard practice and standard recommendations. However, there is 

another option. Unamalgamating is possible where the researcher enters each item separately 

into a multiple regression equation. When there are two items, the standard equation for 
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obtaining the multiple correlation coefficient 𝑅𝑦.12 from the interitem and item-criterion 

correlation coefficients is as follows, using Pedhazur’s notation where y denotes the criterion 

(e.g., Pedhazur, 1997):  

 

    𝑅𝑦.12 = √
𝑟𝑦1

2 +𝑟𝑦2
2 −2𝑟𝑦1𝑟𝑦2𝑟12

1−𝑟12
2 .     (5)  

To keep the notation consistent with Guilford and Fruchter (1973), we can represent the criterion 

with c rather than y. Substituting c for y in Equation 5 renders Equation 6:  

    𝑅𝑐.12 = √
𝑟𝑐1

2 +𝑟𝑐2
2 −2𝑟𝑐1𝑟𝑐2𝑟12

1−𝑟12
2 .     (6)  

Now let’s consider reliability. We have the following components. 

 𝑟𝑐1 expands to 𝜌𝑇𝑐𝑇1√𝑟𝑐𝑐′𝑟11′, 

 𝑟𝑐2 expands to 𝑟𝑇𝑐𝑇2√𝑟𝑐𝑐′𝑟22′, 

 𝑟12 expands to 𝑟𝑇1𝑇2√𝑟11′𝜌22′. 

In turn, we also have the following. 

 𝑟𝑐1
2  expands to 𝑟𝑇𝑐𝑇1

2𝑟𝑐𝑐′𝜌11′, 

 𝑟𝑐2
2  expands to 𝑟𝑇𝑐𝑇2

2𝑟𝑐𝑐′𝑟22′, 

 𝑟12
2  expands to 𝑟𝑇1𝑇2

2𝑟11′𝑟22′. 

Instantiating all bullet-listed components into Equation 6 renders Equation 7. 

𝑅𝑐.12 = √
𝜌𝑇𝑐𝑇1

2𝜌𝑐𝑐′𝜌11′+ 𝜌𝑇𝑐𝑇2
2𝜌𝑐𝑐′𝜌22′−2𝜌𝑇𝑐𝑇1√𝜌𝑐𝑐′𝜌11′𝜌𝑇𝑐𝑇2√𝜌𝑐𝑐′𝜌22′𝜌𝑇1𝑇2√𝜌11′𝜌22′

1−𝜌𝑇1𝑇2
2𝜌11′𝜌22′

  (7)  

Finally, to match the processes involved in deriving Equation 4, it is now necessary to expand all 

reliabilities to be expressed in terms of true and error variances.  



Journal of Indian Economy and Business 

Vol. 1 No. 1 (April 2024); pp 44-77  

 

 

57 

 

 𝜌11′ expands to 
𝜎𝑇1

2

𝜎𝑇1
2 +𝜎𝐸1

2 , 

 𝜌22′ expands to  
𝜎𝑇2

2

𝜎𝑇2
2 +𝜎𝐸2

2 , 

 𝜌𝑐𝑐′ expands to  
𝜎𝑇𝑐

2

𝜎𝑇𝑐
2 +𝜎𝐸𝑐

2 . 
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Instantiating the expanded reliabilities into Equation 7 renders Equation 8. 

𝑅𝑐.12 =

√
𝜌𝑇𝑐𝑇1

2 (
𝜎𝑇𝑐

2

𝜎𝑇𝑐
2 +𝜎𝐸𝑐

2 )(
𝜎𝑇1

2

𝜎𝑇1
2 +𝜎𝐸1

2 )+ 𝜌𝑇𝑐𝑇2
2 (

𝜎𝑇𝑐
2

𝜎𝑇𝑐
2 +𝜎𝐸𝑐

2 )( 
𝜎𝑇2

2

𝜎𝑇2
2 +𝜎𝐸2

2 )−2𝜌𝑇𝑐𝑇1√( 
𝜎𝑇𝑐

2

𝜎𝑇𝑐
2 +𝜎𝐸𝑐

2 )(
𝜎𝑇1

2

𝜎𝑇1
2 +𝜎𝐸1

2 )𝜌𝑇𝑐𝑇2√( 
𝜎𝑇𝑐

2

𝜎𝑇𝑐
2 +𝜎𝐸𝑐

2 )( 
𝜎𝑇2

2

𝜎𝑇2
2 +𝜎𝐸2

2 )𝜌𝑇1𝑇2√(
𝜎𝑇1

2

𝜎𝑇1
2 +𝜎𝐸1

2 )( 
𝜎𝑇2

2

𝜎𝑇2
2 +𝜎𝐸2

2 )

1−𝜌𝑇1𝑇2
2 

𝜎𝑇1
2

𝜎𝑇1
2 +𝜎𝐸1

2  
𝜎𝑇2

2

𝜎𝑇2
2 +𝜎𝐸2

2

 

                 (8) 

 

Equation 8 provides the mathematical basis for the conclusions explained below. 
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To see the potential value of unamalgamating, imagine a two-item test where all items 

and the criterion are measured without any measurement error, where Item 1 correlates with the 

criterion at 0.50, Item 2 correlates with the criterion at 0.10, and where Item 1 and Item 2 

correlate at 0.90. We have already learned that a large interitem correlation coefficient decreases 

criterion prediction when amalgamating. In the present example, amalgamated criterion 

prediction is only 0.30, whereas it would be 0.40 if the true interitem correlation coefficient were 

dropped from 0.90 to 0.10. However, unamalgamating changes matters dramatically and a large 

true interitem correlation coefficient, such as 0.90, no longer decreases prediction. On the 

contrary, a large interitem correlation coefficient becomes very good for prediction when 

unamalgamating: the value is now 0.95! This is vastly improved over the 0.30 value for 

unamalgamated prediction. More generally, Trafimow et al. (2023) recently showed that 

unamalgamated prediction is always as good as, or better than, amalgamated prediction. Thus, 

Trafimow et al. advocated that future researchers should embrace unamalgamating, as opposed 

to the current practice of amalgamating, to best predict criterion variables.  

 However, although there is no attempt here to dispute Trafimow et al., the present focus 

suggests that their conclusion may be strongly qualified depending on item reliabilities. We have 

already seen that item unreliability attenuates criterion prediction under amalgamation, but 

potential harms under separate entry require exploration.  

 Let us commence by continuing the present example and considering Figure 3. As usual, 

each panel in Figure 3 relates criterion prediction with the error standard deviation, but with the 

solid curve representing amalgamating and the dotted curve representing unamalgamating. In 

each panel, unamalgamating is better than or equal to amalgamating. However, the degree of 

superiority depends heavily on whether the true interitem correlation coefficient is set at 0.90 
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(uppermost panels) or 0.10 (bottommost panels) and whether it is Item 1 (leftmost panels) or 

Item 2 (rightmost panels) that have varying levels of measurement error.  

---Insert Figure 3 about here--- 

 Consider the two uppermost panels. In the first panel, where the true item-criterion 

correlation coefficient is 0.50 for Item 1 but only 0.10 for Item 2, adding random error to Item 1 

decreases criterion prediction when unamalgamating or amalgamating, but the effect is more 

pronounced when unamalgamating. In the second panel, where adding randomness applies to 

Item 2, as opposed to Item 1, unreliability still influences criterion prediction but to a lesser 

extent when unamalgamating; the dotted curve decreases more in the first panel than in the 

second panel. A possible explanation for these effects is that under perfect reliability, Item 2 

profoundly influences criterion prediction when unamalgamating due to suppressing error in 

Item 1. Thus, adding random measurement error to Item 1 (a) decreases its ability to predict the 

criterion and (b) decreases the interitem correlation coefficient thereby reducing the ability of 

Item 2 to suppress error in Item 1. The combination of these effects contributes to the dramatic 

decrease in criterion prediction as the error standard deviation increases. In contrast, when it is 

Item 2 that is subject to various degrees of random error, although increasing the error standard 

deviation decreases the ability of Item 2 to suppress error variance in Item 1, it does not 

influence the ability of Item 1 to predict the criterion notwithstanding the error suppression effect 

of Item 2. Consequently, the extent of the decrease in criterion prediction is less pronounced in 

the second panel than in the first panel. The error suppression issue is less relevant under 

amalgamation; thus, the two solid curves are alike in both panels.  

 Moving to the bottommost panels, where the true interitem correlation coefficient is set at 

0.10, there are two immediately obvious effects. As the opportunity for error suppression all but 
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disappears, the dotted curves start at 0.51 as opposed to 0.95, under perfect reliability. Secondly, 

the solid curves are raised in the bottommost panels relative to the topmost panels. In summary, 

reducing the true interitem correlation coefficient is harmful for criterion prediction when 

unamalgamating but beneficial when amalgamating.  

 In addition, when the Item 1 error standard deviation increases in the third panel, it 

strongly influences criterion prediction, to the point where the advantage for unamalgamating 

over amalgamating eventually almost completely disappears. In contrast, when it is the Item 2 

error standard deviation that increases in the fourth panel, the ability of Item 1 to predict the 

criterion is not affected, except for a miniscule error suppression effect that decreases so little 

that it is difficult to discern; thus, criterion prediction remains barely above the 0.50 level. The 

fourth panel is the only one in Figure 3 where more random error accentuates, rather than 

attenuates, the superiority of unamalgamating over amalgamating. Therefore, random 

measurement error can attenuate or accentuate the advantage of unamalgamating over 

amalgamating.  

 All panels in Figure 4 are like corresponding panels in Figure 3, with the single exception 

that the true item-criterion correlation for Item 2 was raised from 0.1 in Figure 3 to 0.4 in Figure 

4. Because Item 2 correlates more with the criterion in Figure 4 than in Figure 3, it can be 

considered “better” in Figure 4 than in Figure 3. Hence, intuitively, criterion prediction ought to 

improve in Figure 4 relative to Figure 3. However, contrary to commonsense when 

unamalgamating (dotted curves), the “worse” item in Figure 3 sometimes leads to better 

prediction than the better item in Figure 4. This paradoxical effect is particularly evident in the 

uppermost panels. In these panels, when the error standard deviation is near zero, criterion 

prediction with the ostensibly better Item 2 in Figure 4 is paradoxically decreased relative to the 
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ostensibly worse Item 2 in Figure 3. The reason for the paradoxical effect may pertain to error 

suppression. When Item 2 better predicts the criterion, less of its variance can be used to 

suppress error in Item 1, thereby paradoxically resulting in decreased criterion prediction. 

However, as error standard deviations increase, error suppression decreases, and the difference 

between the dotted curves in the uppermost panels of the two figures decreases. On the other 

hand, when amalgamating (solid curves), commonsense prevails, as each solid curve in Figure 4 

represents better prediction than its corresponding curve in Figure 3.  

---Insert Figure 4 about here--- 

 It is also interesting to compare Figure 4 against Figure 3 with respect to the bottommost 

panels, when the true interitem correlation coefficient is 0.10. In this case, there is little 

difference between the dotted curves in the two figures, but there is an important difference in 

the solid curves. When amalgamating, the smaller true interitem correlation coefficient provides 

for better prediction when the error standard deviation is near zero but increasing the error 

standard deviation decreases that beneficial effect. In summary, under conditions favoring error 

suppression, a large true interitem correlation coefficient is beneficial when unamalgamating but 

harmful when amalgamating, with both effects qualified by the error standard deviation of Item 1 

in the leftmost panels, or the error standard deviation of Item 2 in the rightmost panels.  

 It is interesting, too, to compare the four panels within Figure 4. As opposed to Figure 3, 

when the true interitem correlation coefficient is 0.1 in the bottommost panels, rather than 0.9 in 

the uppermost panels, even unamalgamating results in better prediction with the smaller true 

interitem correlation coefficient than with the larger one. This is because, as alluded to earlier, 

when Item 2 is “improved” in Figure 4, error suppression is dramatically diminished, and so 

what used to be a beneficial effect of a large true interitem correlation coefficient becomes a 
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harmful effect. In fact, with error suppression reduced, and with a small true interitem correlation 

coefficient in the third and fourth panels of Figure 4, the curves representing unamalgamating 

(dotted curves) and amalgamating (solid curves) are quite similar. In the fourth panel, they are so 

similar that the difference is not visually discernable, and so it appears that there is only one 

curve. In fact, however, the dotted curve, though it cannot be seen, is very slightly above the 

solid curve.  

Discussion 

 The examples and figures demonstrate that item reliabilities can dramatically influence 

criterion prediction. We have seen that even when the overall reliability of a test is impressive, 

unreliability at the level of items can nevertheless be problematic. A perhaps hidden issue is that 

single administration reliability indices, such as Cronbach’s alpha, can be argued to poorly 

capture the essence of reliability (Dunn et al., 2014; Lee and Hooley, 2005; Revelle & Condon, 

2019; Subkoviak, 1976). An advantage of single administration reliability indices is that they are 

easy and cheap, due to the lack of a necessity to measure people twice. However, this easiness is 

costly because the results provide a misleading reliability picture. Advantages of test-retest 

reliability are in (a) providing a less misleading overall reliability picture and (b) rendering 

possible the estimation of item reliabilities. Of course, even test-retest reliability is not perfect 

because the prior test-taking occasion can influence the subsequent one, but the advantages 

nevertheless outweigh the disadvantages. Furthermore, carryover effects can be mitigated in 

ways such as (a) embedding crucial items in a large set of unimportant ones to render memory 

more difficult, (b) increasing the delay between test-taking occasions, (c) providing distractor 

tasks, and (d) performing post-hoc analyses to determine whether there really are any substantial 
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carryover effects. Regarding this last, although such carryover effects are possible and 

sometimes occur, they often do not occur (Trafimow & Rice, 2009).  

 In addition, there are many complex effects pertaining to true item-criterion correlation 

coefficients, true interitem correlation coefficients, and whether the researcher is amalgamating 

or unamalgamating test items. However, and at times crucially, these complex effects are, 

themselves, strongly qualified by item unreliability. Some complexities and qualifications are 

bullet-listed below.  

 Adding items can benefit or harm criterion prediction, depending on true item-criterion 

correlation coefficients, true interitem correlation coefficients, and whether the researcher 

is amalgamating or unamalgamating.  

 Large true interitem correlation coefficients harm criterion prediction when 

amalgamating, despite their desirability for obtaining impressive values on single 

administration reliability indices.  

 Large true interitem correlation coefficients can benefit criterion prediction, if 

unamalgamating, when there is substantial error suppression.  

 Large true interitem correlation coefficients can harm criterion prediction, even if 

unamalgamating, when true item-criterion correlation coefficients are sufficiently similar.  

 Although unamalgamating is always equal to or superior to amalgamating for criterion 

prediction, the extent of the superiority can be immense, nonexistent, or anywhere in-

between, depending on true item-criterion correlation coefficients and true interitem 

correlation coefficients.  

 Perhaps most important, all foregoing bullet-listed effects are crucially qualified by item 

reliabilities. However, the extent of the qualification depends on complex configurations 
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of true item-criterion correlation coefficients, true interitem correlation coefficients, the 

number of items, and whether the researcher is amalgamating or unamalgamating.  

 Item reliabilities can attenuate or accentuate the superiority of unamalgamating over 

amalgamating, depending on item-criterion correlation coefficients and interitem 

correlation coefficients. 

 The complexity of the bullet-pointed conclusions, especially when considered in totality, 

may seem daunting. How can a experimental researcher, who might not be an expert 

psychometrician, keep track of all the complexities? Fortunately, this may not be necessary, as 

there are simplicities buried in the complexities.  

 One such simplicity is that no matter the complexity of the configuration of true item-

criterion correlation coefficients, true interitem correlation coefficients, and item reliabilities, 

unamalgamated prediction always equals or betters amalgamated prediction. Thus, a simple rule 

is that no matter the other complexities, researchers should favor unamalgamating. If 

unamalgamating fails to importantly increase criterion prediction over amalgamating, the 

researcher may or may not favor reporting findings obtained by unamalgamating. However, if 

unamalgamating importantly increases criterion prediction over amalgamating, this would 

constitute an important empirical reason for focusing on results obtained by unamalgamating.  

 Although the extent to which item unreliability harms criterion prediction varies greatly 

depending on configurations of true item-criterion correlation coefficients, true interitem 

correlation coefficients, number of items, and whether the researcher is amalgamating or 

unamalgamating, an underlying simplicity is that item reliability is generally beneficial for 

criterion prediction and item unreliability is generally harmful for criterion prediction. Therefore, 

it is worthwhile, when feasible, to include at least two test-taking occasions into the study design, 
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to enable the estimation of item reliabilities. If criterion prediction is unimpressive, even if 

statistically significant, as is typical in the social sciences, item reliabilities may provide a strong 

clue as to why. If item reliabilities are near perfect, then perhaps the problem resides in small 

true item-criterion correlation coefficients. Then, too, true interitem correlation coefficients may 

be an issue, though this likely depends on whether the researcher is amalgamating or 

unamalgamating. However, if item reliabilities are poor, that may be the obvious first place to 

look to understand the reason for unimpressive criterion prediction. A strong suspicion is that 

many weak effect sizes in the social sciences are due to poor item reliabilities.  

Is Unamalgamating Anti-Theory? 

 Quantitative demonstrations often suggest philosophical issues and the present work is no 

exception. One such issue pertains to theory. If a theory links a predictor construct to a criterion 

construct, then it seems prima facie sensible to amalgamate the items used to measure the 

construct. Moreover, it also seems sensible to create those items so that they correlate highly 

with each other; after all, they are all supposed to be measuring the same construct. However, we 

have seen that following this seemingly sensible strategy is deleterious for predicting the 

criterion. In turn, poor prediction, even if statistically significant, could be argued to undermine 

the worth of the theory. Thus, we have a dilemma, as the seeming theoretically sensible course of 

action and best strategy for criterion prediction oppose. However, there are potential 

circumventions. Unamalgamating is one, as it provides at least the possibility that large interitem 

correlations could then be beneficial rather than harmful for criterion prediction.  

 The obvious objection is that unamalgamating seems contrary to the idea that the test 

items are supposed to measure the same construct. However, it is possible to counter the 

objection. Consider, for instance, that extraversion, a popular Big 5 trait, includes ‘enthusiasm’ 
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and ‘talkative’ items. A researcher could assume that both items measure extraversion, but a 

researcher could contrarily assume that the enthusiasm item measures enthusiasm and the 

talkative item measures talkativeness. There is no compelling reason to insist on an extraversion 

trait when one could instead assume enthusiasm and talkative traits. In that case, 

unamalgamating makes better theoretical sense than amalgamating, as well as being superior for 

criterion prediction, and the tension between theory and prediction disappears.  

 An objection to this line of reasoning hearkens back to the longstanding but not 

completely settled debate in the personality psychology area about whether personality traits 

cause behaviors or are merely convenient summaries of behaviors (see Buss & Craik, 1983, for a 

well-cited review). Either way can be considered problematic. Continuing with the extraversion 

example, to insist that enthusiasm and talkative items measure extraversion is a stretch. Yet, 

insisting that extraversion is merely a summary of behaviors seems a reversion to the bad old 

days of logical positivism and operationalism. However, there is a middle course to take. As 

alluded to earlier, it is possible to posit that enthusiasm and talkative items measure enthusiasm 

and talkativeness, respectively. In that case, there is no reversion to logical positivism and 

operationalism because there are clear traits here: enthusiasm and talkativeness. The stretch to 

extraversion is not necessary. Thus, the debate need not be about whether traits exist or whether 

they are merely summaries of behaviors but could be about which traits social scientists should 

assume to exist. It is one thing to insist that because enthusiasm and talkative items load on the 

same factor, they must measure extraversion, an unwarranted conclusion. It is quite another thing 

to hold that enthusiasm and talkative items measure enthusiasm and talkativeness, respectively, 

and that these traits happen to be sufficiently correlated, with each other and some other traits, 

that they load on the same factor. 
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 The more nuanced philosophical thinking implies benefits. It justifies unamalgamating 

which is generally superior to amalgamating for criterion prediction. Secondly, the nuanced 

philosophical thinking opens the way to consider that the items might really be measuring 

different, though related, traits. Thirdly, a consideration that each item might be measuring a 

different trait renders reasonable the inclusion of traits that do not correlate well with the 

criterion, but that do correlate with another trait, thereby providing the possibility of spectacular 

error suppression. Recall that in Figure 3, error suppression caused criterion prediction to reach 

the gaudy level of 0.95, when the true item-criterion correlation coefficient was 0.50 for Item 1, 

and it was 0.10 for Item 2. Of course, as emphasized earlier, this depends, too, on item 

reliabilities.  

Multicollinearity 

 A potential objection to unamalgamating is that if there are large interitem correlation 

coefficients, this constitutes a multicollinearity problem. It is even possible to argue that item 

unreliability is desirable because it decreases interitem correlation coefficients, thereby 

decreasing multicollinearity problems.  

 However, multicollinearity issues only apply if the researcher is interested in the 

regression weights. The present argument for unamalgamating does not pertain to regression 

weights, but rather to the multiple correlation coefficient. If a researcher is interested in the 

bivariate relations between individual items and a criterion, it is better to use zero-order 

correlation coefficients uncontaminated by relations with other items. Therefore, 

multicollinearity threats need not discommode researchers who are convinced that 

unamalgamating is desirable.  
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Conclusion 

 We commenced by considering and rejecting an argument about why item reliabilities are 

unimportant if the whole test is reliable. On the contrary, item reliabilities are crucial, and 

interact complexly with true item-criterion correlation coefficients, interitem correlation 

coefficients, the number of items, and whether one is amalgamating or unamalgamating.  

 It is interesting to consider the typically small effect sizes in psychology research 

(Schäfer & Schwarz, 2019). These are obviously problematic for application; although 

exceptions may exist, there typically is little reason to invest in applications associated with 

small effects. From a basic research standpoint, alternative explanations more plausibly explain 

small than large effect sizes. For example, although a correlation coefficient equal to 0.90 may 

be spurious, this is a difficult criticism to make; there are few outside variables that can plausibly 

explain such a large correlation coefficient. In contrast, to argue that a correlation coefficient 

equal to 0.10 is spurious is easily done; there are many outside variables that can explain such a 

small correlation coefficient. Thus, for both basic and applied research, small effect sizes can 

decrease the value of the research.  

  Are psychology researchers doomed to small effect sizes? One argument is that the 

psychological universe is so multi-causal that it is unreasonable to expect large effect sizes. 

Consequently, psychology researchers are doomed. However, an alternative possibility is that 

small effect sizes are due, in large part, to measurement problems. In that case, bettering 

measurement holds out the promise of likewise bettering effect sizes. In that spirit, the present 

work suggests two improvements. Researchers should stop amalgamating and instead embrace 

unamalgamating. Secondly, given the present demonstrations that item reliabilities are 

potentially crucial, researchers should obsess as much, or more, about item reliabilities as they 
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currently do about reliabilities of whole tests. It is standard operating procedure to report 

Cronbach’s alpha. However, item reliabilities are much more important than Cronbach’s alpha 

for criterion prediction. Therefore, the assessment and reporting of item reliabilit ies should 

become standard operating procedure. Although stipulating researchers must assess and report 

item reliabilities would be a dramatic change in research and publication practice, the present 

quantification of the potential gains to be enjoyed more than justify the stipulation.  
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Figure 1. Prediction of criterion ranges along the vertical axis as a function of varying the error standard 

deviation for one item (dotted curve), two items (solid curve) or two items and setting the criterion reliability at 

0.70 (dashed curve). The true item-criterion correlation coefficients were set at 0.30 (first and third panels) or 

0.50 (second and fourth panels), and the true interitem correlation coefficient was set at 0.10 (first and second 

panel) or 0.90 (third and fourth panels).  
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Figure 2. Prediction of criterion ranges along the vertical axis as a function of varying the error standard 

deviation. In the leftmost panels representing two-item tests, the error standard deviation varied for one item 

(dotted curve), two items (solid curve), or two items and setting the criterion reliability at 0.70 (dashed curve). 

In the rightmost panels representing three-item tests, the error standard deviation varied for one item (dotted 

curve), two items (solid curve), three items (dashed curve), or three items and setting the criterion reliability at 

0.70 (long dashed curve). The true item-criterion correlation coefficients were set at 0.50, and the true interitem 

correlation coefficient was set at 0.10 (first and second panel) or 0.90 (third and fourth panels).  
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Figure 3. Prediction of criterion ranges along the vertical axis as a function of varying the error standard 

deviation, where Item 1 correlates with the criterion at 0.50 and Item 2 correlates with the criterion at 0.10. The 

dotted curve represents unamalgamating and the solid curve represents amalgamating. In the uppermost panels, 

the true interitem correlation coefficient is set at 0.90 and in the bottommost panels, the true interitem 

correlation coefficient is set at 0.10. In the leftmost panels, the Item 1 error standard deviation was allowed to 

vary, keeping the Item 2 error standard deviation at 0, whereas in the rightmost panels, the Item 2 error standard 

deviation was allowed to vary, keeping the Item 1 error standard deviation at 0.  
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Figure 4. Prediction of criterion ranges along the vertical axis as a function of varying the error standard 

deviation, where Item 1 correlates with the criterion at 0.50 and Item 2 correlates with the criterion at 0.40. The 

dotted curve represents unamalgamating and the solid curve represents amalgamating. In the uppermost panels, 

the true interitem correlation coefficient is set at 0.90 and in the bottommost panels, the true interitem 

correlation coefficient is set at 0.10. In the leftmost panels, the Item 1 error standard deviation was allowed to 

vary, keeping the Item 2 error standard deviation at 0, whereas in the rightmost panels, the Item 2 error standard 

deviation was allowed to vary, keeping the Item 1 error standard deviation at 0.  
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